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The Arabidopsis vacuolar H+-pyrophosphatase (AVP1) has been well studied and subsequently employed to improve salt and/or 
drought resistance in herbaceous plants. However, the exact function of  H+-pyrophosphatase in woody plants still remains 
unknown. In this work, we cloned a homolog of  type I H+-pyrophosphatase gene, designated as PtVP1.1, from Populus tricho-
carpa, and investigated its function in both Arabidopsis and poplar. The deduced translation product PtVP1.1 shares 89.74% 
identity with AVP1. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR 
analyses revealed a ubiquitous expression pattern of  PtVP1.1 in various tissues, including roots, stems, leaves and shoot tips. 
Heterologous expression of  PtVP1.1 rescued the retarded-root-growth phenotype of  avp1, an Arabidopsis knock out mutant of  
AVP1, on low carbohydrate medium. Overexpression of  PtVP1.1 in poplar (P. davidiana × P. bolleana) led to more vigorous growth 
of  transgenic plants in the presence of  150 mM NaCl. Microsomal membrane vesicles derived from PtVP1.1 transgenic plants 
exhibited higher H+-pyrophosphatase hydrolytic activity than those from wild type (WT). Further studies indicated that the improved 
salt tolerance was associated with a decreased Na+ and increased K+ accumulation in the leaves of  transgenic plants. Na+ efflux 
and H+ influx in the roots of  transgenic plants were also significantly higher than those in the WT plants. All these results suggest 
that PtVP1.1 is a functional counterpart of  AVP1 and can be genetically engineered for salt tolerance improvement in trees.
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Introduction

Salinity is one of the major abiotic stresses that adversely affect 
plant growth and productivity in modern agriculture (Wang et al. 
2001). Therefore, engineering new plant species with improved 
salt resistance has been raised as an important agronomic issue 
worldwide. Higher plants have developed a series of mechanisms 
to reduce the injuries imposed by excessive sodium ions in the 
cytoplasm. The compartmentalization of Na+ into vacuoles and 
the exclusion of Na+ from cells by the plasma membrane-located 
Na+/H+ antiporters provide an efficient mechanism for averting the 
toxic effects of Na+ in the cytosol (Shi et al. 2003, Mishra et al. 

2015). The Na+ compartmentalization process is mediated by 
vacuolar Na+/H+ antiporters that are driven by H+ electrochemical 
gradient across the tonoplast generated by the vacuolar H+ pump, 
including vacuolar H+-ATPase and H+-pyrophosphatase (Blumwald 
and Gelli 1997). Plant vacuolar-type inorganic pyrophosphatases 
(H+-PPase) utilize the energy of inorganic pyrophosphate (PPi) 
hydrolysis as the driving force for H+ movement across biological 
membranes, and are highly conserved among different plant spe-
cies (Drozdowicz and Rea 2001). Prototypical plant H+-PPases 
are divided into two phylogenetically distinct types, depending on 
their sensitivity to K+. Plant type I H+-PPases, which were first 
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isolated from vacuoles, depend on cytosolic K+ for their maximum 
activity and are moderately sensitive to the inhibition of Ca2+ (Rea 
and Poole 1985, Rea et al. 1992, Maeshima 2000). It was 
reported that both PPi hydrolysis and PPi-dependent proton 
pumping activities of H+-PPases in rye plants grown under min-
eral-deficient conditions such as K+, NO3

− ,  Ca2+-deficiency were 
greater than in those grown under normal conditions (Kasai et al. 
1998).

In principle, enhanced expression of vacuolar H+-PPases should 
increase the sequestration of ions in the vacuole by increasing the 
H+ movement across biological membranes (Gaxiola et al. 2001). 
In practice, overexpression of AVP1 coding for a single subunit 
protein of type I vacuolar H+-PPase from Arabidopsis, and other 
plant type I H+-PPase genes, increased both salt and drought tol-
erance in diverse systems, including Arabidopsis (Arabidopsis 
thaliana; Gaxiola et al. 2001), tomato (Lycopersicon esculentum; 
Park et al. 2005), tobacco (Nicotiana tabacum; Gao et al. 2006, 
Duan et al. 2007), rice (Oryza sativa; Zhao et al. 2006), cotton 
(Gossypium hirsutum; Lv et al. 2008, 2009), alfalfa (Medicago 
sativa; Bao et al. 2009), maize (Zea mays; Li et al. 2008) and 
creeping bentgrass (Agrostis stolonifera; Li et al. 2010). Further-
more, up-regulation of AVP1 also enhanced root and shoot bio-
mass, photosynthetic capacity and nutrient uptake by affecting the 
abundance and the activity of PM H+-ATPase in a manner corre-
lated with apoplastic pH alterations and rhizosphere acidification. 
These phenotypes have been observed in a variety of agricultur-
ally important crops grown under normal or limited nutrient condi-
tions, such as low Pi and NO3

−  (Li et al. 2005, Yang et al. 2007, 
Paez-Valencia et al. 2013).

Although all these previous studies have highlighted the impor-
tant roles of H+-PPases in herbaceous plants, very little is known 
about the possible roles of this kind of H+ pump in trees. Populus 
has been studied as an important model of woody plants because 
of its worldwide distribution, genotype diversity, economic and 
ecological relevance, sequenced genome and easier genetic 
manipulation (Jansson and Douglas 2007). In this work, we cloned 
a type I H+-pyrophosphatase homolog PtVP1.1 from Populus 
trichocarpa and investigated its function in both Arabidopsis and 
poplar. We also generated transgenic poplar (P.  davidiana ×  
P. bolleana) overexpressing PtVP1.1 to test its potential application 
in the engineering of salt-tolerant woody plants. Our results indi-
cate that constitutive expression of PtVP1.1 can significantly 
enhance the resistance of transgenic poplar plants to salt, and the 
improved salt tolerance was associated with the augmented PPi 
hydrolytic activities, the decreased Na+ and increased K+ accumula-
tion, and the improved Na+ efflux and H+ influx in transgenic plants.

Materials and methods

Plant materials and growth conditions

Arabidopsis thaliana ecotype Col-0 was used in this study. avp1 
(GK-596F06-025557) was obtained from GABI-KAT (http://

www.gabi-kat.de/). Homozygous avp1 mutant was identified 
using gene-specific and T-DNA left border primers (see Table S1 
available as Supplementary Data at Tree Physiology Online).

Arabidopsis seeds were sterilized with 10% sodium hypo-
chlorite for 5 min and washed three times with sterilized water, 
and then plated on MS medium (Murashige and Skoog 1962) 
supplemented with 2% sucrose (or 0.2% sucrose for low carbo-
hydrate phenotypic assay) and 0.8% agar. Seeds were stratified 
at 4 °C for 2 days and then transferred to 22 °C for another 
7 days before they were transferred to soil and grown in green-
house at 21–23 °C under 12 h light/12 h dark cycles.

Populus trichocarpa genotype Nisqually-1 and Shanxin yang 
(P. davidiana × P. bolleana) used in this study were propagated 
and cultivated as described previously (Wang et al. 2011). Ini-
tially, poplar materials were amplified and kept by aseptically 
transferring shoot apices to fresh MS medium supplemented 
with 0.1 mg l−1 naphthaleneacetic acid. Plantlets were grown in 
glass bottles in the culture room with cool white fluorescent light 
(∼200 μmol m−2 s−1) under 12 h light/12 h dark photoperiod at 
21–25/15–18 °C (day/night). One-month-old plantlets were 
transferred to soil and kept in greenhouse under 14 h photope-
riod comprising natural daylight supplemented with lamps 
(120–150 μEm−2 s−1) at ∼21–25/15–18 °C (day/night).

Subcellular localization studies

To determine the subcellular localization of PtVP1.1, the coding 
region of PtVP1.1 was in-frame fused to the 3′-terminal of cyan 
fluorescent protein (CFP) sequence via the SmaI-SpeI site in the 
pA7-CFP plasmid and transferred into poplar mesophyll proto-
plasts or A. thaliana plant system biology dark-type culture 
(PSBD) protoplasts by polyethylene glycol-mediated transfec-
tion as described previously (Miao and Jiang 2007, Tang et al. 
2014). Cyan fluorescent protein fluorescence was imaged after 
the protoplasts were incubated at 23 °C for 16 h by the confocal 
laser scanning microscope at 458 nm wavelength (Carl Zeiss 
LSM 510; META, Dresden, Germany).

Plant transformation

To produce the gain-of-function allele of  PtVP1.1 gene 
(PtVP1.1m), a Glu227-to-Asp mutation was introduced into 
PtVP1.1 by PCR-based Site-Directed Mutagenesis Kit (Strata-
gene, La Jolla, CA, USA) using the designated primers (see Table 
S1 available as Supplementary Data at Tree Physiology Online). 
Then, pKS-PtVP1.1m plasmid was digested with SmaI and SalI 
to release the PtVP1.1m coding sequence, and inserted into a 
modified pCAMBIA-2301 vector downstream of the cauliflower 
mosaic virus 35S promoter. The resultant construct was intro-
duced into Arabidopsis or Shanxin yang by Agrobacterium-medi-
ated transformation as described previously (Clough and Bent 
1998, Wang et al. 2011). Putative transgenic plants were 
screened on MS medium containing 30 μg l−1 kanamycin and 
transferred to soil for propagations. Regenerated transgenic 
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plants were analyzed by PCR with 35S or PtVP1.1 specific 
primers (P35S, PtVP1.1RT-F and PtVP1.1RT-R) (see Table S1 
available as Supplementary Data at Tree Physiology Online).

RT-PCR and quantitative real-time RT-PCR analyses

For the expression pattern analysis of PtVP1.1 in poplar, total 
RNA was extracted with the RNAiso Reagent (TaKaRa, Osaka,  
Japan) from different organs or tissues of 6-month-old wild-type 
(WT) Shanxin yang, including root (R), elongating internode (EI), 
thickening stem (TS), juvenile leaf (JL), mature leaf (ML), petiole 
(Pe) and apical bud (A). Xylem (X) and phloem (P) tissues were 
simply separated by stripping off the barks with a sharp blade.

To verify the relative expression level of different transgenic 
lines, total RNA was isolated from leaves of WT and kanamycin-
resistant plantlets with the RNAiso Reagent (TaKaRa). After 
treatment with DNase I (Promega, Madison, WI, USA), a total 
amount of 2 μg RNA was subjected to reverse transcription 
reaction using ReverTra Ace (TOYOBO, Osaka, Japan) at 42 °C 
for 1 h. The resultant cDNA was then used for PCR amplification 
with gene-specific primers. ACTIN2 and poplar elongation factor 
gene EF1β were employed as internal control in Arabidopsis and 
poplar, respectively. Quantitative real-time RT-PCR was per-
formed with the SYBR Green Realtime PCR Master Mix (Vazyme 
Biotech, Nanjing, China) and monitored in real time with the CFX 
Connect Real-Time System (Bio-Rad, Hercules, CA, USA). Three 
technical replicas were performed. The relative expression of 
PtVP1.1 was calculated based on the comparative threshold 
cycle method using ACTIN2 or EF1β as a control and normalized 
to the WT expression values. All primers used in this research 
are listed in Table S1 available as Supplementary Data at Tree 
Physiology Online.

Salt stress tests of transgenic poplar

To test the salt tolerance of WT and transgenic poplar at the whole-
plant level, 1-month-old micro-propagated WT and transgenic 
plantlets were transplanted to soil. After 6 weeks of acclimation in 
the greenhouse, WT and transgenic lines with similar size and 
growth status were divided into two groups. Each group was 
watered every 3 days with 1/8 MS salt solution supplemented with 
or without 150 mM NaCl for 3 weeks. At the 15th day after the 
initiation of salt treatment, leaves of WT and transgenic plants from 
control and treated groups were sampled separately for the deter-
mination of chlorophyll content and malondialdehyde (MDA) con-
centration using the methods described by Lichtenthaler (1987) 
and Zhao et al. (1994). At the end of salt treatment, plant height, 
shoot and root biomass of each individual plant were measured 
immediately. The root, stem and leaf materials of each plant were 
harvested separately and were used for Na+ and K+ content deter-
mination. For survival rate analyses, salt-treated plants were cut 
∼10 cm above the root–shoot joint, and soil in each pot was 
washed three times with fresh water (1 l per plant each time). After 
2 weeks, plants with new buds were defined as survivors.

Determination of Na+ and K+ contents

Plant materials collected from WT and transgenic plants at the 
end of salt treatment were dried at 80 °C for 48 h. Dried sam-
ples (50 mg) were digested with concentrated HNO3, and Na+ 
and K+ contents in the digested solution were determined with 
an atomic absorption spectrophotometer (Z-8000; Hitachi, 
Tokyo, Japan) as described previously (Wang and Zhao 1995).

PPase activity measurements

Leaf microsomal fractions were prepared as described previ-
ously (Tang et al. 2012). Leaves of 6-week-old hydroponically 
grown plants were ground in cold homogenization buffer con-
taining 350 mM sucrose, 70 mM Tris–HCl (pH 8.0), 3 mM 
Na2EDTA, 0.2% (w/v) BSA, 1.5% (w/v) PVP-40, 5 mM DTT, 
10% (v/v) glycerol, 1 mM PMSF and 1× protease inhibitor mix-
ture (Roche, Penzberg, Germany). The homogenate was filtered 
through four layers of cheesecloth and centrifuged at 4000g for 
20 min at 4 °C. The supernatant was filtered through cheese-
cloth again and then centrifuged at 100,000g (XL-70; Beckman, 
Brea, CA, USA) for 1 h. The resultant microsomal pellet was 
resuspended in 350 mM sucrose, 10 mM Tris–Mes (pH 7.0), 
2 mM DTT and 1× protease inhibitor mixture. PPase activity of 
10 µg microsomal membranes was determined as phosphate 
(Pi) release after 40 min incubation at 28 °C. The PPase activity 
was assayed in a reaction solution containing 25 mM Tris–Mes 
(pH 7.5), 2 mM MgSO4, 100 µM Na2MoO4, 0.1% Brij 58 and 
200 µM Na4P2O7. PPase activity was expressed as the differ-
ence measured in the absence and presence of 50 mM KCl. For 
the measurement of inorganic Pi amount, reactions were termi-
nated by adding 40 mM citric acid. Freshly prepared AAM solu-
tion [50% (v/v) acetone, 2.5 mM ammoniummolybdate, 1.25 M 
H2SO4] was then added to the reaction, vortexed and colori-
metrically examined at 355 nm (UV752N; INESA, Shanghai, 
China). For the blank value, 10 µg boiled membranes instead of 
fresh microsomes were used.

H+ flux assays

The recording protocols were followed as described previously 
(Sun et al. 2009a, 2009b, Li et al. 2012). Briefly, pre-pulled 
and silanized glass micropipettes (diameter 5 ± 1 μm, XY-DJ-
01; Xuyue Beijing Science and Technology Co., Ltd, Beijing, 
China) were back-filled with H+ electrode solution (40 mM 
KH2PO4 and 15 mM NaCl, pH 7.0) to a length of 1.0 cm from 
the tip. Then the micropipettes were front-filled with 10 μm col-
umns of selective liquid ion exchange cocktails (LIXs; H: Fluka 
95293). An Ag/AgCl wire electrode holder (XYEH01-1; Xuyue 
Beijing Science and Technology Co., Ltd) was inserted in the 
back of the electrode to make electrical contact with the measur-
ing solution. The reference electrode was an Ag/AgCl half-cell 
(DRIREF-2; World Precision Instruments, Inc., Sarasota, FL, USA) 
connected to the experimental solution by a 0.5% agarose 
bridge containing 3.0 M KCl. Prior to the flux measurements, the 
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microelectrodes were calibrated by the H+ standard solution: H+: 
pH 5.0, 6.0 and 7.0. pH was adjusted to 6.0 with NaOH and 
HCl in the measuring solution.

Only electrodes with Nernstian slopes 58 ± 5 mV/decade 
(H+) were used in our experiments. On the basis of Fick’s law of 
diffusion, the ion flux rate was calculated as J = −D(dc/dx), 
where J is the ion flux in the x direction, D is the ion diffusion 
constant in a particular medium and dc/dx is the ion concentra-
tion gradient. Data and image acquisition, preliminary process-
ing, control of the three-dimensional electrode positioner and 
stepper-motor-controlled fine focus of the microscope stage 
were performed with ASET software (Science Wares, East Fal-
mouth, MA, USA, and Applicable Electronics, Sandwich, MA, 
USA).

For steady-state flux recording, root segments were rinsed 
with distilled water and equilibrated in the measuring solution 
(0.1 mM KCl, 0.1 mM NaCl, 0.1 mM CaCl2 and 0.1 mM 
MgCl2) for 30 min. Then they were transferred and immobi-
lized on Petri dishes containing 10 ml of  fresh measuring 
solution. After equilibration to the basic solution, the steady-
state fluxes of H+ at the meristematic zone, elongation zone 
and maturation zone were measured at an interval of 
30–50 μm.

The effects of H+-ATPase inhibitors on H+ fluxes were also 
examined in the roots of WT, LP1 and LP9 plants. After 7 days 
of NaCl treatment (100 mM), roots with apices of 1.0–2.0 cm 
were sampled from control and salt-treated plants and then incu-
bated in 500 μM sodium orthovanadate (Na3VO4) solution for 
30 min. The steady flux of H+ was examined in the measuring 
solution without the addition of the inhibitor.

For flux data analysis, the micro-Volt differences were 
exported as raw data before they were imported and converted 
into net H+ fluxes by using the program JCal V3.2.1 (a free MS 
Excel spreadsheet, http://www.youngerusa.com or http://www.
ifluxes.com).

Na+ flux assays

Wild-type and transgenic plants (lines LP1 and LP9) were sub-
jected to a long-term NaCl exposure. Roots were carefully 
removed from MS agar medium, and exposed to MS mineral 
solution supplemented with or without 100 mM NaCl for 7 days. 
The nutrient and saline solution was renewed every 24 h, then 
the roots of WT and transgenic plants were used for ion flux 
measurements.

Ion flux profiles were measured with the Non-invasive Micro-
test Technique (NMT; NMT-YG-100, Younger USA LLC, Amherst, 
MA, USA) with ASET 2.0 (Science Wares) and iFluxes 1.0 Soft-
ware (Younger USA, LLC), which is able to simultaneously inte-
grate and coordinate differential voltage signal collection, motion 
control and image capture. The standard protocols for Na+ micro-
electrode preparation and calculation were described previously 
(Sun et al. 2009a, 2009b, Li et al. 2012, Yang et al. 2015).

For steady-state flux recording, root segments with the apices 
of 15–20 mm in length, excised from non-stressed controls and 
stressed plants, were rinsed with distilled water and equilibrated 
in the measuring solution (0.1 mM KCl, 0.1 mM NaCl, 0.1 mM 
CaCl2 and 0.1 mM MgCl2) for 30 min. Then non-transgenic and 
transgenic plants roots were transferred and immobilized on 
Petri dishes containing 10 ml of fresh measuring solution. The 
measured positions of roots were visualized and defined under 
the NMT microscope because young roots of sample plants 
were semitransparent under light (Sun et al. 2009a, 2009b, Li 
et al. 2012). After equilibration to the basic solution, the steady-
state fluxes of Na+ at the meristematic zone (∼300 µm from the 
root apex), elongation zone (∼400–700 µm from the root apex) 
and maturation zone (∼1000 µm from the root apex) were mea-
sured at an interval of 30–50 μm.

In accordance with a previous finding (Chen et al. 2005), we 
noticed that K+ and Ca2+ in the measuring solution reduced the 
selectivity of Na+ microelectrodes filled with commercially avail-
able Na+ liquid ion exchanger (Li et al. 2012). In this study, to 
reduce the interfering effects of K+ and Ca2+ on Na+ flux (Cuin 
et al. 2011), Ca2+ and K+ concentrations in the measuring solu-
tion were set to a lower concentration of 0.1 mM (Li et al. 2012).

The inhibitory effect of amiloride (a Na+/H+ antiporter-specific 
inhibitor) on Na+ flux was examined in WT and transgenic plant 
roots. The non-stressed and salinized roots were treated with 
amiloride (50 µM) for 30 min. Then steady-state Na+ flux was 
recorded in the measuring solution in the absence of the inhibitor.

The micro-Volt differences were exported as raw data before 
they were imported and converted into net Na+ fluxes by using 
the program JCal V3.2.1 (a free MS Excel spreadsheet, http://
www.youngerusa.com or http://www.ifluxes.com).

Statistical analyses and GenBank accession numbers

For statistical analyses, Student’s t-test was used to generate 
every P value. A P-value of <0.05 was considered a statistically 
significant difference. The tests were one-tailed. The data were 
normalized and all samples were normally distributed with 
homogeneity of variance.

The gene abbreviation and GenBank accession numbers are as 
follows: AVP1 (A. thaliana, NM_101437), TsVP1 (Thellungiella sal-
suginea, AY436553), BnVP1 (Brassica napus, KC443038), 
PtVP1.1 (P. trichocarpa, XM_002331026), PtVP1.2 (P. trichocarpa, 
XM_002325151), PtVP1.3 (P. trichocarpa, XM_002318920), 
PtVP1.4 (P. trichocarpa, XM_002330213), Ntppa1 (N. tabacum, 
X83729), Ntppa2 (N. tabacum, X83730), GhVP1 (G. hirsutum, 
HM370494), NrAVP1 (Nicotiana rustica, DQ630713), Zmvpp1 
(Z. mays, NM_001111910), OVP1 (O. sativa, D45383), OVP2 
(O.  sativa, D45384), AVP2 (A. thaliana, AF182813), PtSOS1 
(P.  trichocarpa, XM_002315801), PtNHX1 (P. trichocarpa, 
XM_002307158), PtNHX2 (P. trichocarpa, XM_002319556), 
PtNHX4 (P. trichocarpa, XM_002315496), PtCAT2 (P. trichocarpa, 
XM_006382924) and PtP5CS1 (P. trichocarpa, XM_002315166).
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Results

Isolation and sequence analysis of PtVP1.1

To dissect the possible role of H+-pyrophosphatase in abiotic 
stress response of woody plants, we performed homology-based 
BLAST searches to collect candidate gene sequences coding 
vacuole type I H+-pyrophosphatases from the Joint Genome Initia-
tive poplar database (JGI, P. trichocarpa genome portal v1.1; 
http://genome.jgi-psf.org/Poptr1_1/Poptr1_1.home.html). Four 
candidate AVP1 homologs were identified from the Populus 
genome, designated as PtVP1.1, PtVP1.2, PtVP1.3 and PtVP1.4. 
A sequence (2307 bp) encoding PtVP1.1 was isolated (GenBank 
accession No. XM_002331026). PtVP1.1 encodes a 768 amino 
acid protein (PtVP1.1) with a calculated molecular mass of 
80 kDa, which shares the highest identity in amino acid sequence 
with H+-pyrophosphatases from other higher plants, such as AVP1 
(89.74% identity) (Figure 1a). PtVP1, like the other H+-pyrophos-
phatases from Arabidopsis, rice and cotton, contains all the highly 
conserved domains reported by Drozdowicz and Rea (2001) 
(Figure 1a). Phylogenetic analysis showed that PtVP1.1 is clus-
tered to type I (K+-sensitive) vacuolar H+-PPases (Figure 1b). 
Protein structure analysis using TMHMM Server v. 2.0 (http://
www.cbs.dtu.dk/services/TMHMM) predicted 13 transmembrane 
domains (Figure 1c), similar to the other higher plant H+-PPases 
(Maeshima 2000). This observation is consistent with the 

putative role of PtVP1.1 that acts as a putative vacuolar H+-PPases 
in Populus.

PtVP1.1 is ubiquitously expressed in Populus

As a first step to understand the possible biological functions of 
PtVP1.1, we performed RT-PCR analysis to determine their rela-
tive transcript abundance in various tissues and organs of green-
house grown Shanxin yang. The results showed that transcript 
levels of  PtVP1.1 were detectable in all tested materials 
(Figure 2a). Further quantitative real-time RT-PCR analyses indi-
cated that PtVP1.1 was ubiquitously expressed in R, EI, TS, X, P, 
JL, ML, Pe and A, with the highest expression level in xylem tis-
sues (Figure 2b).

Populus PtVP1.1 protein is a functional homolog of AVP1

To further determine the possible function of PtVP1.1, an Ara-
bidopsis T-DNA insertion line avp1 (GK-596F06-025557) was 
characterized. The avp1 mutant contained a T-DNA insertion in 
the second exon of AVP1 (see Figure S1a available as Supple-
mentary Data at Tree Physiology Online). A homozygous T3 
avp1 individual was isolated (see Figure S1b available as Sup-
plementary Data at Tree Physiology Online). This insertion abol-
ished the expression of AVP1 in avp1. As confirmed by RT-PCR 
analyses using AVP1-specific primers, avp1 mutant lacked a 
detectable level of transcripts for AVP1 (see Figure S1c and 

PtVP1.1 promotes salt tolerance in poplar  5

Figure 1.  Amino acid sequence alignment and phylogenetic tree of different H+-PPase protein family members. (a) Multiple alignment of the deduced 
amino acid sequences of H+-PPase proteins from Populus trichocarpa (PtVP1.1, XM_002331026), Arabidopsis thaliana (AVP1, NM_101437), Oryza 
sativa (OsVP1, D45383) and Gossypium hirsutum (GhVP1, No. HM370494). Residues are highlighted in black, dark gray and light gray according to 
the level of conservation. The highly conserved motifs reported by Drozdowicz and Rea (2001) for H+-PPase proteins are boxed. The Glu227-to-Asp 
mutation of PtVP1.1 is indicated with an asterisk. (b) Phylogenetic tree of typical vacuolar H+-PPase proteins from various organisms. Phylogram in 
which the branch lengths are proportional to sequence divergence was conducted with DNAMAN software. (c) The predicted transmembrane domains 
of PtVP1.1 protein using TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM).
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Table S1 available as Supplementary Data at Tree Physiology 
Online). Compared with WT plants (Col-0), avp1 mutant exhib-
ited no obvious phenotypic change during the life cycle when 

grown under normal nutrient condition (Figures 3a and S1d 
available as Supplementary Data at Tree Physiology Online). 
However, the growth of avp1 mutant plants were stunted with 

6  Yang et al.

Figure 3.  Functional complementation of Arabidopsis avp1 mutant by PtVP1.1m. (a) Growth phenotype of WT, avp1 and two PtVP1.1m complementary 
lines 8 and 12 on MS medium supplemented with 2% (MS0) or 0.2% (LC) sucrose. Photographs were taken on the fifth day after seeds germinated. 
(b) RT-PCR analyses of transgene expression in wild type (WT), avp1 and different PtVP1.1m complementary lines. ACTIN2 gene was used as an 
internal control. (c and d) Primary root length and shoot fresh weight of seedlings at the end of treatment. Values are means ± SD of 20 individual 
plants with three independent biological replicates. Scale bars = 5 mm.

Figure 2.  PtVP1.1 expression pattern in different tissues of Shanxin yang (Populus davidiana × P. bolleana). (a) RT-PCR analyses. (b) Quantitative real-
time PCR analyses. Elongation factor gene EF1β was used as an internal control. R, root; EI, elongating internode; TS, thickening stem; X, xylem; P, 
phloem; JL, juvenile leaf; ML, mature leaf; Pe, petiole; A, apical bud.
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shortened root length and decreased fresh weight when grown 
under low carbohydrate (0.2% sucrose) conditions (Figure 3c 
and d).

Previously, an intragenic E229D gain-of-function allele of 
AVP1 was shown to have an in vitro-coordinated increase of 
both PPi hydrolytic activity and PPi-dependent H+ translocation 
(Zhen et al. 1997). Therefore, we constructed an E227D gain-
of-function allele of PtVP1.1m gene with a Glu227-to-Asp muta-
tion in PtVP1.1 (Figure 4a). Transformation of avp1 with either 
35S:AVP1 or 35S:PtVP1.1m restored growth phenotype to the 
WT (Figures 3 and S2a–d available as Supplementary Data at 
Tree Physiology Online). All these results demonstrate that 
PtVP1.1(m) protein is a functional homolog of its Arabidopsis 
counterpart (AVP1).

Generation and molecular confirmation of transgenic 
poplar plants overexpressing PtVP1.1

In order to understand the function of PtVP1.1 in salt tolerance, 
we introduced the construct containing PtVP1.1m, driven by the 
CaMV 35S promoter (Yang et al. 2008), into the genome of the 
aspen hybrid clone Shanxin yang by Agrobacterium-mediated 
transformation (Figure 4a). At least 20 independently regener-
ated kanamycin-resistant lines were obtained. Polymerase chain 
reaction analysis confirmed the integration of PtVP1.1 into the 
genome of all the 11 randomly selected transgenic lines 
(Figure 4b). The relative expression levels of PtVP1.1 in these 
transgenic lines were further quantified by quantitative real-time 
PCR (Figure 4c). Three independent transgenic lines (LP1, LP8 

and LP9) with the same expression level as in the WT (LP8) or 
overexpression (LP1 and LP9) of PtVP1.1 were selected for 
subsequent experiments. Measurement of isolated leaf micro-
somal fractions from WT and PtVP1.1 transgenic plants revealed 
that transgenic plants overexpressing PtVP1.1 (LP1 and LP9) 
had higher H+-PPase activity than did the WT and LP8 plants 
(Figure 4d).

Overexpression of PtVP1.1 confers salt tolerance 
on transgenic poplar

To test whether overexpression of PtVP1.1 would increase salt 
tolerance, we examined the effects of salt on the growth of 
transgenic poplars at whole-plant scale. At least 30 plants of WT 
and of each transgenic line (LP8, LP1 and LP9) were grown in 
a greenhouse. Overexpression of PtVP1.1 did not change the 
overall development or plant morphology of transgenic poplar as 
transgenic lines LP8, LP1 and LP9 all grew well under normal 
growth conditions. There were no significant differences in 
growth phenotype (Figure 5a), plant height (Figure 5c), shoot 
fresh biomass (Figure 5d) or root fresh biomass (Figure 5e) 
between WT and transgenic plants. However, after 3 weeks of 
treatment with 150 mM NaCl, transgenic plants were consider-
ably taller (Figure 5b and c) and produced significantly more 
shoot and root biomass than did the WT plants (Figure 5d and e). 
PtVP1.1 overexpressing plants exhibited near-to-normal leaf 
color and less growth inhibition (Figure 5b–e). Compared with 
WT, the two overexpressing lines LP1 and LP9 produced 18 and 
27% more fresh shoot mass, respectively, in the presence of 
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Figure 4.  Plant expression vector and confirmation of transgenic poplar plants. (a) Schematic map of T-DNA region in the pCAMBIA2301- PtVP1.1m 
vector used for poplar transformation. Expression of PtVP1.1m is driven by the cauliflower mosaic virus 35S promoter. 35S: CaMV35S promoter; OCS, 
octopine synthase gene terminator; NPTII, neomycin phosphotransferase II gene; GUS, β-glucuronidase gene; NOS, NOS terminator. (b) PCR confirma-
tion of independently regenerated kanamycin-resistant lines. (c) Quantitative real-time PCR analyses of PtVP1.1 expression levels in different transgenic 
lines. WT, wild type; LP1–LP11, different transgenic lines. (d) H+-PPase hydrolytic activity of three representative transgenic lines.
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Figure 5.  Overexpression of PtVP1.1 enhances salt tolerance in transgenic poplar plants. (a and b) Effects of salinity on the growth of wild type (WT) 
and three independent transgenic lines LP8, LP1 and LP9. Six-week-old plants were treated with 0 or 150 mM NaCl for 21 days and then representa-
tive plants were chosen and photographed. Scale bars = 10 cm. (c) Plant height. (d) Shoot biomass. (e) Root biomass. (f) Survival rate. Values are 
means ± SD using 10 plants per line of two independent experiments. Asterisks indicate significant differences in comparison with the WT at P < 0.05 
by Student’s t-test.

Figure 6.  Ion content analyses. Wild-type (WT) and transgenic poplar plants (lines LP8, LP1 and LP9) were treated with 0 or 150 mM NaCl for 3 weeks. 
Plant materials were harvested and pooled as roots, stems and leaves for the measurement of Na+ and K+ contents. (a and d) Na+ contents. (b and e) 
K+ contents. (c and f) K+/Na+ ratios. Values are means ± SD of six plants per lines from two independent experiments. Asterisks indicate statistically 
significant difference in comparison with the WT (Student’s t-test, *0.01 < P < 0.05, **P < 0.01).
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150 mM NaCl (Figure 5d). Transgenic plants also showed a 
superior survival rate after the salt treatment (Figure 5f), and 
maintained relatively higher chlorophyll and lower MDA content 
in the leaves during the salt stress (see Figure S3a and b avail-
able as Supplementary Data at Tree Physiology Online). All these 
results indicate that overexpression of PtVP1.1 enhanced salt 
tolerance in transgenic plants.

PtVP1.1 overexpression regulates tissue Na+ and K+ 
distribution in transgenic plants

In order to approach how PtVP1.1 confers salt tolerance on 
transgenic poplar plants, we analyzed the concentrations of Na+ 
and K+ in different tissues of WT and transgenic plants grown 
under normal and salinity conditions. Consistent with our previous 
observation (Tang et al. 2014), under normal growth condition, 
poplar plants deposited most of Na+ in the roots and accumulated 
more K+ in the leaves (Figure 6a and b). And transgenic plants 
accumulated higher K+ in roots and leaves but not in stems than 
did WT plants (Figure  6b). Under salt stress conditions, Na+ 

content dramatically increased in all plant tissues of both WT and 
transgenic plants (Figure 6d), accompanied by a decrease in K+ 
content (Figure  6e). However, Na+ content in the leaves of 
PtVP1.1 overexpressing lines (LP1 and LP9) was significantly 
lower (Figure 6d) whereas K+ content (Figure 6e) and K+/Na+ 
ratio (Figure 6f) were dramatically higher than that in the leaves 
of WT and LP8 plants.

Na+ efflux and H+ influx are higher in the roots of 
transgenic poplar plants overexpressing PtVP1.1

The uptake, transport and compartmentalization of Na+ are cru-
cial for plants to survive under saline conditions. Using NMT, we 
examined the in vivo Na+ and H+ flux in the roots of WT and 
transgenic plants overexpressing PtVP1.1. Under normal (no-
saline) conditions, the rates of Na+ efflux and H+ influx in the 
roots of transgenic plants were about the same as (or lower 
than) that in WT control plants. However, upon treatment 
with 100 mM NaCl, Na+ efflux and H+ influx in both PtVP1.1 
overexpressing lines LP1 and LP9 were significantly higher than 
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Figure 7.  Net Na+ flux test. Effect of salinity (100 mM NaCl) on net Na+ efflux in the roots of transgenic lines (LP1, LP9) and WT plants. (a) Meriste-
matic zone. (b) Elongation zone. (c) Maturation zone. (d) Mean net Na+ efflux. Values are means ± SD from three independent experiments. Asterisks 
indicate statistically significant difference in comparison with the WT (Student’s t-test, *0.01 < P < 0.05, **P < 0.01).
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WT in the measured regions of roots (meristematic, elongation 
and mature zones) (Figures 7 and 8). The increased Na+ efflux 
and H+ influx in transgenic plants could be the result of improved 
Na+/H+ exchange activity, as amiloride, a specific inhibitor of 
Na+/H+ antiporter, and Na3VO4, a specific inhibitor of H+ pump, 
respectively, significantly reduced the salt-elicited Na+ efflux (see 
Figure S4a–c available as Supplementary Data at Tree Physiol-
ogy Online) and H+ influx (see Figure S4d–f available as Supple-
mentary Data at Tree Physiology Online) in the salt-stressed 
roots.

Discussion

As a perennial tree species, poplar may face different external 
abiotic stresses such as salt, drought and low temperature dur-
ing its long lifetime course. Most poplar species are salt sensi-
tive, except Populus euphratica, which has been selected due to 
its salt resistance (Chen and Polle 2010, Chen et al. 2014, Polle 
and Chen 2014), and crossed with other relevant cultivars to 
breed trees with increased salt tolerance. However, little success 

has been achieved due to the crossing barriers between differ-
ent woody species. Therefore, genetic engineering has been 
employed as an alternative strategy to breed trees with improved 
salt tolerance (Hu et al. 2005, Wang et al. 2005, Takabe et al. 
2008).

Higher plants have a large number of transport proteins that 
mediate Na+ absorption, extrusion, translocation and sequestra-
tion (Horie and Schroeder 2004, Apse and Blumwald 2007) 
and a genetic regulatory network of signal transduction path-
ways to tightly regulate their response and adaption to environ-
mental salt stress (Brinker et al. 2010, Janz et al. 2010). Despite 
the complexity of salt tolerance, introducing one single key 
gene, especially some regulatory genes involved in multiple sig-
naling pathways, has successfully enhanced salt tolerance in 
transgenic plants (Zhang and Blumwald 2001, Yamaguchi and 
Blumwald 2005, Munns and Tester 2008, Pardo 2010). Among 
these genes, overexpression of AVP1 and other plant type I H+-
PPase genes increased both salt and drought tolerance in differ-
ent plant species (Gaxiola et al. 2001, Park et al. 2005, Gao 
et al. 2006, Zhao et al. 2006, Duan et al. 2007, Li et al. 2008, 

10  Yang et al.

Figure 8.  Net H+ flux test. Effect of salinity (100 mM NaCl) on net H+ influx in the roots of transgenic lines (LP1, LP9) and WT plants. (a) Meristematic 
zone. (b) Elongation zone. (c) Maturation zone. (d) Mean net H+ influx. Values are means ± SD from three independent experiments. Asterisks indicate 
statistically significant difference in comparison with the WT (Student’s t-test, *0.01 < P < 0.05, **P < 0.01).
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2010, Lv et al. 2008, 2009, Bao et al. 2009). All these obser-
vations in herbaceous plants led us to postulate that overexpres-
sion of an H+-PPase gene from woody plant might also confer 
stress tolerance on trees. To examine this hypothesis, we iso-
lated a type I H+-PPase homolog gene (PtVP1.1) from P. tricho-
carpa and investigated its possible function in Arabidopsis and 
transgenic poplar plants.

PtVP1.1 shares very high amino acid sequence identity with 
AVP1, and is similar to the other identified homologs such as 
OsVP1 and GhVP1 (Figure 1) (Zhao et al. 2006, Lv et al. 2008, 
2009) that contain all the highly conserved domains 
(Drozdowicz and Rea 2001), indicating its possible role as a 
putative vacuolar H+-PPase in Populus. Since P. trichocarpa has 
been used as an important model for trees (Jansson and Douglas 
2007), a comparative study on the genetic effects of abiotic 
stress tolerance between Shanxin yang (P. davidiana × P. bolleana) 
and A. thaliana could shed light on the difference in the mecha-
nisms of plant tolerance to environmental stress between herba-
ceous and woody plants. Previously, it was shown that in the four 
ecotypes of A. thaliana, salt tolerance of plants was positively 
related with AVP1 expression. The two ecotypes of Ler and Ws, 
which showed a higher expression level of AtAVP1 in both roots 
and shoots, also demonstrated higher tolerance to salinity when 
compared with ecotypes Col and C24, which had a lower level 
of both AtAVP1 expression and salinity tolerance (Jha et al. 
2010). In Shanxin yang, PtVP1.1 mRNA was the most abun-
dantly accumulated in xylem tissues and mature leaves 
(Figure 2). Therefore, the high expression of PtVP1.1 in xylem 
tissues and mature leaves of wild-type Shanxin yang may imply 
a crucial role of PtVP1.1 in salt tolerance of poplar plants.

Considering the high sequence homology of  AVP1 and 
PtVP1.1, the physiological role of PtVP1.1 was approached by 
avp1 mutant analysis (see Figure S1a–d available as Supple-
mentary Data at Tree Physiology Online). The most dramatic 
phenotypic changes in avp1 mutant were the stunted growth, 
especially the root growth (Figures 3a, c, d and S2b–d available 
as Supplementary Data at Tree Physiology Online). Based on 
the previous report that an intragenic E229D gain-of-function 
allele of AVP1 had an in vitro-coordinated increase of both PPi 
hydrolytic activity and PPi-dependent H+-translocation (Zhen 
et  al. 1997), we generated a constitutively active form of 
PtVP1.1m by mutating the 227th amino acid Glu to Asp 
(Figure 4a). PtVP1.1m restored growth phenotype of avp1 to 
the WT as did AVP1 (Figures 3 and S2a–d available as Supple-
mentary Data at Tree Physiology Online), indicating that 
PtVP1.1m can be employed as a functional allele of PtVP1.1 in 
plants.

In terms of engineering of woody plants with improved salt 
tolerance, it is very important and practical to start with a rela-
tively salt-tolerant variety. Different from the recently reported 
transgenic aspen T89, which shows hypersensitivity to as low a 
concentration of 17 mM NaCl (Zhou et al. 2014), Shanxin yang 

is a relatively more salt-tolerant hybrid aspen clone. Therefore, 
we constitutively overexpressed PtVP1.1 in Shanxin yang, in 
which the native PtVP1.1 homolog (PdbVP1.1) shares very high 
amino acid (99.20%) identity with PtVP1.1 (Figures 4a–c and 
S5a available as Supplementary Data at Tree Physiology Online). 
As was been expected, the salt tolerance is significantly 
improved (Figure 5). Transgenic plants overexpressing PtVP1.1 
survived a concentration of 150 mM NaCl. To our knowledge, 
this is the highest concentration that has been reported so far in 
the tolerance of transgenic tree species. Previously, we overex-
pressed either PtSOS3 or PtCBL10, and transgenic poplar plants 
showed a tolerance to 100 mM NaCl in the same cultivar (Tang 
et al. 2014). The highest concentration of NaCl tested with 
transgenic T89 was 85 mM (Zhou et al. 2014).

It has been long suggested that both vascular long-distance 
Na+ transport to different plant tissues and optimal Na+ redistri-
bution within the plant are critical in plant salt tolerance (Munns 
and Tester 2008). In addition to maintaining vacuolar pH and 
building up H+ gradient, AVP1 also functions in auxin transport 
and consequently auxin-dependent development (Li et al. 
2005). In transgenic plants overexpressing PtVP1.1, the salt-
tolerant phenotype was associated with a lower Na+ content and 
a higher K+ content in leaf  tissues relative to WT plants 
(Figure 6). Data presented here are consistent with the earlier 
report that transgenic plants overexpressing SOS1 accumulated 
less Na+ in the shoot upon treatment with salt (Shi et al. 2003). 
A higher K+–Na+ ratio associated with salt tolerance has been 
reported by many researchers (Luo et al. 2009, 2011, Yang 
et al. 2015).

In creeping bentgrass (A. stolonifera L.), heterologous expres-
sion of AVP1 conferred increased salt tolerance and Na+ accu-
mulation (Li et al. 2010). In tomato, co-expression of AVP1 and 
Pennisetum glaucum vacuolar Na+/H+ antiporter PgNHX1 also 
conferred enhanced salt tolerance to the transformed tomato 
compared with the WT. Transgenic tomato plants grew well in 
the presence of 200 mM NaCl, retained more chlorophyll, pro-
duced more proline and accumulated higher Na+ in their leaf 
tissue as a response to salt stress (Bhaskaran and Savithramma 
2011). Conversely, we observed that transgenic plants overex-
pressing PtVP1.1 accumulated lower Na+ content in their leaf 
tissue in the presence of 150 mM NaCl (Figure 6d). Similar 
results were also observed in our previous study with transgenic 
poplar overexpressing PtCBL10A or PtCBL10B (Tang et al. 
2014). In poplar, unlike PtSOS3 which is mainly expressed in 
root tissues, PtCBL10 genes were preferentially expressed in 
shoots (Tang et al. 2010, 2014). Therefore, we hypothesize 
that, to maintain an optimal K+/Na+ ratio and thereby confer 
increased salt tolerance to transgenic plants, PtSOS2 may inter-
act with PtCBL10s and/or PtSOS3 in different tissues/organs to 
activate the plasma membrane-located Na+/H+ antiporter 
PtSOS1 and/or tonoplast-located Na+/H+ antiporter(s) such as 
PtNHX1 (Tang et al. 2010, 2014). Indeed, various subcellular 
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localizations such as vacuolar and plasma membrane of AVP1 in 
different cell types have been reported (Long et al. 1995, 
Baltscheffsky et al. 1999, Ratajczak et al. 1999, Drozdowicz 
and Rea 2001, Li et al. 2005, Segami et al. 2014). In this study, 
Na+ content was lower in the leaves but higher in the stems of 
transgenic plants overexpressing PtVP1.1 when compared with 
the WT controls upon treatment with salt stress (Figure 6d). Fur-
thermore, transient expression of CFP-PtVP1.1 in poplar meso-
phyll protoplasts and Arabidopsis PSBD protoplasts indicated 
that the fusion protein was mainly localized to the plasma mem-
brane, with a minor localization to the cytosol (see Figure S5b 
and c available as Supplementary Data at Tree Physiology 
Online). Therefore, the decreased Na+ content in transgenic 
plant overexpressing PtVP1.1 can be possibly ascribed to the 
increased PtSOS1 Na+/H+ exchange activity driven by the 
enhanced H+ gradient in the leaf tissues. This hypothesis is also 
supported by the unchanged PtSOS1 transcription in both trans-
genic lines overexpressing PtVP1.1 (see Figure S6a available as 
Supplementary Data at Tree Physiology Online) and the SOS1-
dependent salt tolerance triggered by H+-PPase up-regulation in 
Arabidopsis. Enhanced AVP1 protein level is post-translationally 
regulated by SOS1 (Undurraga et al. 2012). Future work such 
as systematic examination of the native subcellular location(s) 
of PtVP1.1 in different tissue cells will be required to fully under-
stand the precise action of PtVP1.1 in poplar.

Another interesting observation is that transgenic plants over-
expressing PtVP1.1 showed a higher K+ content and K+/Na+ 
ratio in leaf tissues than did the WT under both no-salt and salty 
conditions (Figure 6b, c, e and f). Translocation of K+ into the 
lumen can be regulated by vacuolar NHX-type K+/H+ antiporters 
such as NHX1 (Leidi et al. 2010, Bassil et al. 2011, Barragán 
et al. 2012). Therefore, a possible explanation is that more K+ 
accumulated in the vacuole as a compensation for the loss of 
other mineral ions. Therefore, it would be interesting to deter-
mine how K+/H+ exchange at the tonoplast was altered in the 
transgenic plants overexpressing PtVP1.1.

Now that salt tolerance was mainly exhibited in the aerial 
parts of transgenic plants overexpressing PtVP1.1 (Figure 5b), 
and consistent with the reduced Na+ content in leaf tissues 
(Figure 6d), results in this work indicate that overexpression of 
PtVP1.1 might have promoted the active efflux of Na+ in roots 
and thereby altered its distribution to leaves. In transgenic 
plants, the lower Na+ content in mature leaves was associated 
with an increased Na+ efflux in the roots (Figure 7). To further 
assess whether the improved Na+/H+ exchange activity was a 
consequence of increased H+ gradient in these transgenic 
plants, influx of H+ in roots was also investigated. Four-week-
old seedlings grown on MS medium, which were much more 
sensitive to salt than the soil-grown plants, were used and 
exposed to salt solution directly for a long time. To make sure 
the roots would not die before the end of salt treatment, we 
lowered the NaCl concentration from 150 to 100 mM. Similar 

to the rise of Na+ efflux, influx of H+ was also dramatically ele-
vated as a response to salt stress (Figure 8). To ensure that the 
relatively higher Na+ efflux and H+ influx were not due to passive 
diffusion, amiloride, an inhibitor of  Na+/H+ antiporter, and 
Na3VO4, a specific inhibitor of H+ pump, was used in our study. 
Pretreatment with amiloride and Na3VO4 efficaciously restrained 
root Na+ efflux and H+ influx in transgenic plants, respectively 
(see Figure S4a–f available as Supplementary Data at Tree 
Physiology Online), suggesting that the increased Na+ efflux and 
H+ influx were indeed a result of improved Na+/H+ exchange 
and H+ translocation activity across the vacuolar and/or plasma 
membrane. We also examined the expression levels of Na+/H+ 
antiporter genes (see Figure S6a–d available as Supplementary 
Data at Tree Physiology Online), and found that the transcripts 
of both PtNHX2 and PtNHX4 were up-regulated in transgenic 
plants overexpressing PtVP1.1 upon treatment with 150 mM 
NaCl, implying that the increased Na+/H+ exchange activities 
could be a result of both improved expression and activity of 
these Na+/H+ transporters (see Figure S6a–d available as Sup-
plementary Data at Tree Physiology Online).

Salt stress can adversely affect photosynthesis and the elec-
tron transport system (Demmig-Adams and Adams 1992, 
Allakhverdiev et al. 2002). Under high saline conditions, exces-
sive cytoplasmic Na+ gives rise to an imbalanced cellular ion 
contents, leading to the production of reactive oxygen species 
(ROS) such as singlet oxygen, H2O2 and O2

⋅− ,  which causes 
chlorophyll degradation and membrane lipid peroxidation 
(Hasegawa et al. 2000, Yasar et al. 2006). To evaluate the abil-
ity of transgenic plants to alleviate salt effects on photosynthe-
sis, chlorophyll and MDA contents were examined in WT and 
transgenic plants overexpressing PtVP1.1. The loss of chloro-
phyll and the accumulation of MDA in the leaves of transgenic 
plants were significantly lower than those in the control set dur-
ing exposure to salinity (see Figure S3a and b available as Sup-
plementary Data at Tree Physiology Online). Metabolism of ROS 
is controlled by a complex set of antioxidant enzymes. Catalase 
(CAT) along with superoxide dismutase (SOD) and ascorbate 
peroxidases (APX) are the major enzymes responsible for ROS 
scavenging (Mittler 2002). Although the expression of SOD and 
APX was largely unaffected in WT and transgenic plants after 
being treated with 150 mM NaCl (data not shown), transcription 
of CAT, which has been considered to be especially important 
for detoxification of H2O2 formed during photosynthesis and 
photorespiration (Willekens et al. 1997), was dramatically up-
regulated in transgenic plants overexpressing PtVP1.1 (see Fig-
ure S6e available as Supplementary Data at Tree Physiology 
Online). Transcription of a proline biosynthesis gene PtP5CS1 
was also up-regulated (see Figure S6f available as Supplemen-
tary Data at Tree Physiology Online). All these results suggest 
that the photosynthetic machinery is protected from deleterious 
salt effects, possibly by the reduced Na+ accumulation in trans-
genic plants.
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In conclusion, data presented in this study demonstrate that 
constitutive overexpression of PtVP1.1 in poplar increased salt 
tolerance. Overexpression of PtVP1.1 enhanced the H+-PPase 
activity and Na+ efflux, thereby reducing Na+ accumulation in 
transgenic plants, leading to improved tolerance to salt in these 
plants. The substantially increased resistance to salt stress 
reported here provides a promising strategy for engineering 
salt-tolerant trees by constitutively expressing the PtVP1.1 
gene.

Supplementary data

Supplementary data for this article are available at Tree Physiology 
Online.
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